Best AI Models for Linux of 2026 - Page 4

Find and compare the best AI Models for Linux in 2026

Use the comparison tool below to compare the top AI Models for Linux on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    DeepCoder Reviews

    DeepCoder

    Agentica Project

    Free
    DeepCoder, an entirely open-source model for code reasoning and generation, has been developed through a partnership between Agentica Project and Together AI. Leveraging the foundation of DeepSeek-R1-Distilled-Qwen-14B, it has undergone fine-tuning via distributed reinforcement learning, achieving a notable accuracy of 60.6% on LiveCodeBench, which marks an 8% enhancement over its predecessor. This level of performance rivals that of proprietary models like o3-mini (2025-01-031 Low) and o1, all while operating with only 14 billion parameters. The training process spanned 2.5 weeks on 32 H100 GPUs, utilizing a carefully curated dataset of approximately 24,000 coding challenges sourced from validated platforms, including TACO-Verified, PrimeIntellect SYNTHETIC-1, and submissions to LiveCodeBench. Each problem mandated a legitimate solution along with a minimum of five unit tests to guarantee reliability during reinforcement learning training. Furthermore, to effectively manage long-range context, DeepCoder incorporates strategies such as iterative context lengthening and overlong filtering, ensuring it remains adept at handling complex coding tasks. This innovative approach allows DeepCoder to maintain high standards of accuracy and reliability in its code generation capabilities.
  • 2
    DeepSWE Reviews

    DeepSWE

    Agentica Project

    Free
    DeepSWE is an innovative and fully open-source coding agent that utilizes the Qwen3-32B foundation model, trained solely through reinforcement learning (RL) without any supervised fine-tuning or reliance on proprietary model distillation. Created with rLLM, which is Agentica’s open-source RL framework for language-based agents, DeepSWE operates as a functional agent within a simulated development environment facilitated by the R2E-Gym framework. This allows it to leverage a variety of tools, including a file editor, search capabilities, shell execution, and submission features, enabling the agent to efficiently navigate codebases, modify multiple files, compile code, run tests, and iteratively create patches or complete complex engineering tasks. Beyond simple code generation, DeepSWE showcases advanced emergent behaviors; when faced with bugs or new feature requests, it thoughtfully reasons through edge cases, searches for existing tests within the codebase, suggests patches, develops additional tests to prevent regressions, and adapts its cognitive approach based on the task at hand. This flexibility and capability make DeepSWE a powerful tool in the realm of software development.
  • 3
    DeepScaleR Reviews

    DeepScaleR

    Agentica Project

    Free
    DeepScaleR is a sophisticated language model comprising 1.5 billion parameters, refined from DeepSeek-R1-Distilled-Qwen-1.5B through the use of distributed reinforcement learning combined with an innovative strategy that incrementally expands its context window from 8,000 to 24,000 tokens during the training process. This model was developed using approximately 40,000 meticulously selected mathematical problems sourced from high-level competition datasets, including AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. Achieving an impressive 43.1% accuracy on the AIME 2024 exam, DeepScaleR demonstrates a significant enhancement of around 14.3 percentage points compared to its base model, and it even outperforms the proprietary O1-Preview model, which is considerably larger. Additionally, it excels on a variety of mathematical benchmarks such as MATH-500, AMC 2023, Minerva Math, and OlympiadBench, indicating that smaller, optimized models fine-tuned with reinforcement learning can rival or surpass the capabilities of larger models in complex reasoning tasks. This advancement underscores the potential of efficient modeling approaches in the realm of mathematical problem-solving.
  • 4
    GLM-4.6V Reviews
    The GLM-4.6V is an advanced, open-source multimodal vision-language model that belongs to the Z.ai (GLM-V) family, specifically engineered for tasks involving reasoning, perception, and action. It is available in two configurations: a comprehensive version with 106 billion parameters suitable for cloud environments or high-performance computing clusters, and a streamlined “Flash” variant featuring 9 billion parameters, which is tailored for local implementation or scenarios requiring low latency. With a remarkable native context window that accommodates up to 128,000 tokens during its training phase, GLM-4.6V can effectively manage extensive documents or multimodal data inputs. One of its standout features is the built-in Function Calling capability, allowing the model to accept various forms of visual media — such as images, screenshots, and documents — as inputs directly, eliminating the need for manual text conversion. This functionality not only facilitates reasoning about the visual content but also enables the model to initiate tool calls, effectively merging visual perception with actionable results. The versatility of GLM-4.6V opens the door to a wide array of applications, including the generation of interleaved image-and-text content, which can seamlessly integrate document comprehension with text summarization or the creation of responses that include image annotations, thereby greatly enhancing user interaction and output quality.
  • 5
    GLM-4.1V Reviews
    GLM-4.1V is an advanced vision-language model that offers a robust and streamlined multimodal capability for reasoning and understanding across various forms of media, including images, text, and documents. The 9-billion-parameter version, known as GLM-4.1V-9B-Thinking, is developed on the foundation of GLM-4-9B and has been improved through a unique training approach that employs Reinforcement Learning with Curriculum Sampling (RLCS). This model accommodates a context window of 64k tokens and can process high-resolution inputs, supporting images up to 4K resolution with any aspect ratio, which allows it to tackle intricate tasks such as optical character recognition, image captioning, chart and document parsing, video analysis, scene comprehension, and GUI-agent workflows, including the interpretation of screenshots and recognition of UI elements. In benchmark tests conducted at the 10 B-parameter scale, GLM-4.1V-9B-Thinking demonstrated exceptional capabilities, achieving the highest performance on 23 out of 28 evaluated tasks. Its advancements signify a substantial leap forward in the integration of visual and textual data, setting a new standard for multimodal models in various applications.
  • 6
    GLM-4.5V-Flash Reviews
    GLM-4.5V-Flash is a vision-language model that is open source and specifically crafted to integrate robust multimodal functionalities into a compact and easily deployable framework. It accommodates various types of inputs including images, videos, documents, and graphical user interfaces, facilitating a range of tasks such as understanding scenes, parsing charts and documents, reading screens, and analyzing multiple images. In contrast to its larger counterparts, GLM-4.5V-Flash maintains a smaller footprint while still embodying essential visual language model features such as visual reasoning, video comprehension, handling GUI tasks, and parsing complex documents. This model can be utilized within “GUI agent” workflows, allowing it to interpret screenshots or desktop captures, identify icons or UI components, and assist with both automated desktop and web tasks. While it may not achieve the performance enhancements seen in the largest models, GLM-4.5V-Flash is highly adaptable for practical multimodal applications where efficiency, reduced resource requirements, and extensive modality support are key considerations. Its design ensures that users can harness powerful functionalities without sacrificing speed or accessibility.
  • 7
    GLM-4.5V Reviews
    GLM-4.5V is an evolution of the GLM-4.5-Air model, incorporating a Mixture-of-Experts (MoE) framework that boasts a remarkable total of 106 billion parameters, with 12 billion specifically dedicated to activation. This model stands out by delivering top-tier performance among open-source vision-language models (VLMs) of comparable scale, demonstrating exceptional capabilities across 42 public benchmarks in diverse contexts such as images, videos, documents, and GUI interactions. It offers an extensive array of multimodal functionalities, encompassing image reasoning tasks like scene understanding, spatial recognition, and multi-image analysis, alongside video comprehension tasks that include segmentation and event recognition. Furthermore, it excels in parsing complex charts and lengthy documents, facilitating GUI-agent workflows through tasks like screen reading and desktop automation, while also providing accurate visual grounding by locating objects and generating bounding boxes. Additionally, the introduction of a "Thinking Mode" switch enhances user experience by allowing the selection of either rapid responses or more thoughtful reasoning based on the situation at hand. This innovative feature makes GLM-4.5V not only versatile but also adaptable to various user needs.
  • 8
    MiniMax-M2.1 Reviews
    MiniMax-M2.1 is a state-of-the-art open-source AI model built specifically for agent-based development and real-world automation. It focuses on delivering strong performance in coding, tool calling, and long-term task execution. Unlike closed models, MiniMax-M2.1 is fully transparent and can be deployed locally or integrated through APIs. The model excels in multilingual software engineering tasks and complex workflow automation. It demonstrates strong generalization across different agent frameworks and development environments. MiniMax-M2.1 supports advanced use cases such as autonomous coding, application building, and office task automation. Benchmarks show significant improvements over previous MiniMax versions. The model balances high reasoning ability with stability and control. Developers can fine-tune or extend it for specialized agent workflows. MiniMax-M2.1 empowers teams to build reliable AI agents without vendor lock-in.
  • 9
    Composer 1 Reviews

    Composer 1

    Cursor

    $20 per month
    Composer is an AI model crafted by Cursor, specifically tailored for software engineering functions, and it offers rapid, interactive coding support within the Cursor IDE, an enhanced version of a VS Code-based editor that incorporates smart automation features. This model employs a mixture-of-experts approach and utilizes reinforcement learning (RL) to tackle real-world coding challenges found in extensive codebases, enabling it to deliver swift, contextually aware responses ranging from code modifications and planning to insights that grasp project frameworks, tools, and conventions, achieving generation speeds approximately four times faster than its contemporaries in performance assessments. Designed with a focus on development processes, Composer utilizes long-context comprehension, semantic search capabilities, and restricted tool access (such as file editing and terminal interactions) to effectively address intricate engineering inquiries with practical and efficient solutions. Its unique architecture allows it to adapt to various programming environments, ensuring that users receive tailored assistance suited to their specific coding needs.
  • 10
    StarCoder Reviews
    StarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks.
  • 11
    Llama 2 Reviews
    Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
  • 12
    Code Llama Reviews
    Code Llama is an advanced language model designed to generate code through text prompts, distinguishing itself as a leading tool among publicly accessible models for coding tasks. This innovative model not only streamlines workflows for existing developers but also aids beginners in overcoming challenges associated with learning to code. Its versatility positions Code Llama as both a valuable productivity enhancer and an educational resource, assisting programmers in creating more robust and well-documented software solutions. Additionally, users can generate both code and natural language explanations by providing either type of prompt, making it an adaptable tool for various programming needs. Available for free for both research and commercial applications, Code Llama is built upon Llama 2 architecture and comes in three distinct versions: the foundational Code Llama model, Code Llama - Python which is tailored specifically for Python programming, and Code Llama - Instruct, optimized for comprehending and executing natural language directives effectively.
  • 13
    TinyLlama Reviews
    The TinyLlama initiative seeks to pretrain a Llama model with 1.1 billion parameters using a dataset of 3 trillion tokens. With the right optimizations, this ambitious task can be completed in a mere 90 days, utilizing 16 A100-40G GPUs. We have maintained the same architecture and tokenizer as Llama 2, ensuring that TinyLlama is compatible with various open-source projects that are based on Llama. Additionally, the model's compact design, consisting of just 1.1 billion parameters, makes it suitable for numerous applications that require limited computational resources and memory. This versatility enables developers to integrate TinyLlama seamlessly into their existing frameworks and workflows.
  • 14
    Pixtral Large Reviews
    Pixtral Large is an expansive multimodal model featuring 124 billion parameters, crafted by Mistral AI and enhancing their previous Mistral Large 2 framework. This model combines a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, allowing it to excel in the interpretation of various content types, including documents, charts, and natural images, all while retaining superior text comprehension abilities. With the capability to manage a context window of 128,000 tokens, Pixtral Large can efficiently analyze at least 30 high-resolution images at once. It has achieved remarkable results on benchmarks like MathVista, DocVQA, and VQAv2, outpacing competitors such as GPT-4o and Gemini-1.5 Pro. Available for research and educational purposes under the Mistral Research License, it also has a Mistral Commercial License for business applications. This versatility makes Pixtral Large a valuable tool for both academic research and commercial innovations.
  • 15
    Yi-Large Reviews

    Yi-Large

    01.AI

    $0.19 per 1M input token
    Yi-Large is an innovative proprietary large language model created by 01.AI, featuring an impressive context length of 32k and a cost structure of $2 for each million tokens for both inputs and outputs. Renowned for its superior natural language processing abilities, common-sense reasoning, and support for multiple languages, it competes effectively with top models such as GPT-4 and Claude3 across various evaluations. This model is particularly adept at handling tasks that involve intricate inference, accurate prediction, and comprehensive language comprehension, making it ideal for applications such as knowledge retrieval, data categorization, and the development of conversational chatbots that mimic human interaction. Built on a decoder-only transformer architecture, Yi-Large incorporates advanced features like pre-normalization and Group Query Attention, and it has been trained on an extensive, high-quality multilingual dataset to enhance its performance. The model's flexibility and economical pricing position it as a formidable player in the artificial intelligence landscape, especially for businesses looking to implement AI technologies on a global scale. Additionally, its ability to adapt to a wide range of use cases underscores its potential to revolutionize how organizations leverage language models for various needs.
  • 16
    DeepSeek R2 Reviews
    DeepSeek R2 is the highly awaited successor to DeepSeek R1, an innovative AI reasoning model that made waves when it was introduced in January 2025 by the Chinese startup DeepSeek. This new version builds on the remarkable achievements of R1, which significantly altered the AI landscape by providing cost-effective performance comparable to leading models like OpenAI’s o1. R2 is set to offer a substantial upgrade in capabilities, promising impressive speed and reasoning abilities akin to that of a human, particularly in challenging areas such as complex coding and advanced mathematics. By utilizing DeepSeek’s cutting-edge Mixture-of-Experts architecture along with optimized training techniques, R2 is designed to surpass the performance of its predecessor while keeping computational demands low. Additionally, there are expectations that this model may broaden its reasoning skills to accommodate languages beyond just English, potentially increasing its global usability. The anticipation surrounding R2 highlights the ongoing evolution of AI technology and its implications for various industries.
  • 17
    BitNet Reviews

    BitNet

    Microsoft

    Free
    Microsoft’s BitNet b1.58 2B4T is a breakthrough in AI with its native 1-bit LLM architecture. This model has been optimized for computational efficiency, offering significant reductions in memory, energy, and latency while still achieving high performance on various AI benchmarks. It supports a range of natural language processing tasks, making it an ideal solution for scalable and cost-effective AI implementations in industries requiring fast, energy-efficient inference and robust language capabilities.
  • 18
    Gemma 3n Reviews

    Gemma 3n

    Google DeepMind

    Introducing Gemma 3n, our cutting-edge open multimodal model designed specifically for optimal on-device performance and efficiency. With a focus on responsive and low-footprint local inference, Gemma 3n paves the way for a new generation of intelligent applications that can be utilized on the move. It has the capability to analyze and respond to a blend of images and text, with plans to incorporate video and audio functionalities in the near future. Developers can create smart, interactive features that prioritize user privacy and function seamlessly without an internet connection. The model boasts a mobile-first architecture, significantly minimizing memory usage. Co-developed by Google's mobile hardware teams alongside industry experts, it maintains a 4B active memory footprint while also offering the flexibility to create submodels for optimizing quality and latency. Notably, Gemma 3n represents our inaugural open model built on this revolutionary shared architecture, enabling developers to start experimenting with this advanced technology today in its early preview. As technology evolves, we anticipate even more innovative applications to emerge from this robust framework.
  • 19
    GigaChat 3 Ultra Reviews
    GigaChat 3 Ultra redefines open-source scale by delivering a 702B-parameter frontier model purpose-built for Russian and multilingual understanding. Designed with a modern MoE architecture, it achieves the reasoning strength of giant dense models while using only a fraction of active parameters per generation step. Its massive 14T-token training corpus includes natural human text, curated multilingual sources, extensive STEM materials, and billions of high-quality synthetic examples crafted to boost logic, math, and programming skills. This model is not a derivative or retrained foreign LLM—it is a ground-up build engineered to capture cultural nuance, linguistic accuracy, and reliable long-context performance. GigaChat 3 Ultra integrates seamlessly with open-source tooling like vLLM, sglang, DeepSeek-class architectures, and HuggingFace-based training stacks. It supports advanced capabilities including a code interpreter, improved chat template, memory system, contextual search reformulation, and 128K context windows. Benchmarking shows clear improvements over previous GigaChat generations and competitive results against global leaders in coding, reasoning, and cross-domain tasks. Overall, GigaChat 3 Ultra empowers teams to explore frontier-scale AI without sacrificing transparency, customizability, or ecosystem compatibility.
  • 20
    PaLM Reviews
    The PaLM API offers a straightforward and secure method for leveraging our most advanced language models. We are excited to announce the release of a highly efficient model that balances size and performance, with plans to introduce additional model sizes in the near future. Accompanying this API is MakerSuite, an easy-to-use tool designed for rapid prototyping of ideas, which will eventually include features for prompt engineering, synthetic data creation, and custom model adjustments, all backed by strong safety measures. Currently, a select group of developers can access the PaLM API and MakerSuite in Private Preview, and we encourage everyone to keep an eye out for our upcoming waitlist. This initiative represents a significant step forward in empowering developers to innovate with language models.
  • 21
    PaLM 2 Reviews
    PaLM 2 represents the latest evolution in large language models, continuing Google's tradition of pioneering advancements in machine learning and ethical AI practices. It demonstrates exceptional capabilities in complex reasoning activities such as coding, mathematics, classification, answering questions, translation across languages, and generating natural language, surpassing the performance of previous models, including its predecessor PaLM. This enhanced performance is attributed to its innovative construction, which combines optimal computing scalability, a refined mixture of datasets, and enhancements in model architecture. Furthermore, PaLM 2 aligns with Google's commitment to responsible AI development and deployment, having undergone extensive assessments to identify potential harms, biases, and practical applications in both research and commercial products. This model serves as a foundation for other cutting-edge applications, including Med-PaLM 2 and Sec-PaLM, while also powering advanced AI features and tools at Google, such as Bard and the PaLM API. Additionally, its versatility makes it a significant asset in various fields, showcasing the potential of AI to enhance productivity and innovation.
  • 22
    FLUX1.1 Pro Reviews

    FLUX1.1 Pro

    Black Forest Labs

    Free
    Black Forest Labs has introduced the FLUX1.1 Pro, a groundbreaking model in AI-driven image generation that raises the standard for speed and quality. This advanced model eclipses its earlier version, FLUX.1 Pro, by achieving speeds that are six times quicker while significantly improving image fidelity, accuracy in prompts, and creative variation. Among its notable enhancements are the capability for ultra-high-resolution rendering reaching up to 4K and a Raw Mode designed to create more lifelike, organic images. Accessible through the BFL API and seamlessly integrated with platforms such as Replicate and Freepik, FLUX1.1 Pro stands out as the premier choice for professionals in need of sophisticated and scalable AI-generated visuals. Furthermore, its innovative features make it a versatile tool for various creative applications.
  • 23
    HunyuanCustom Reviews
    HunyuanCustom is an advanced framework for generating customized videos across multiple modalities, focusing on maintaining subject consistency while accommodating conditions related to images, audio, video, and text. This framework builds on HunyuanVideo and incorporates a text-image fusion module inspired by LLaVA to improve multi-modal comprehension, as well as an image ID enhancement module that utilizes temporal concatenation to strengthen identity features throughout frames. Additionally, it introduces specific condition injection mechanisms tailored for audio and video generation, along with an AudioNet module that achieves hierarchical alignment through spatial cross-attention, complemented by a video-driven injection module that merges latent-compressed conditional video via a patchify-based feature-alignment network. Comprehensive tests conducted in both single- and multi-subject scenarios reveal that HunyuanCustom significantly surpasses leading open and closed-source methodologies when it comes to ID consistency, realism, and the alignment between text and video, showcasing its robust capabilities. This innovative approach marks a significant advancement in the field of video generation, potentially paving the way for more refined multimedia applications in the future.
  • 24
    gpt-oss-20b Reviews
    gpt-oss-20b is a powerful text-only reasoning model consisting of 20 billion parameters, made available under the Apache 2.0 license and influenced by OpenAI’s gpt-oss usage guidelines, designed to facilitate effortless integration into personalized AI workflows through the Responses API without depending on proprietary systems. It has been specifically trained to excel in instruction following and offers features like adjustable reasoning effort, comprehensive chain-of-thought outputs, and the ability to utilize native tools such as web search and Python execution, resulting in structured and clear responses. Developers are responsible for establishing their own deployment precautions, including input filtering, output monitoring, and adherence to usage policies, to ensure that they align with the protective measures typically found in hosted solutions and to reduce the chance of malicious or unintended actions. Additionally, its open-weight architecture makes it particularly suitable for on-premises or edge deployments, emphasizing the importance of control, customization, and transparency to meet specific user needs. This flexibility allows organizations to tailor the model according to their unique requirements while maintaining a high level of operational integrity.
  • 25
    gpt-oss-120b Reviews
    gpt-oss-120b is a text-only reasoning model with 120 billion parameters, released under the Apache 2.0 license and managed by OpenAI’s usage policy, developed with insights from the open-source community and compatible with the Responses API. It is particularly proficient in following instructions, utilizing tools like web search and Python code execution, and allowing for adjustable reasoning effort, thereby producing comprehensive chain-of-thought and structured outputs that can be integrated into various workflows. While it has been designed to adhere to OpenAI's safety policies, its open-weight characteristics present a risk that skilled individuals might fine-tune it to circumvent these safeguards, necessitating that developers and enterprises apply additional measures to ensure safety comparable to that of hosted models. Evaluations indicate that gpt-oss-120b does not achieve high capability thresholds in areas such as biological, chemical, or cyber domains, even following adversarial fine-tuning. Furthermore, its release is not seen as a significant leap forward in biological capabilities, marking a cautious approach to its deployment. As such, users are encouraged to remain vigilant about the potential implications of its open-weight nature.